Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines
نویسندگان
چکیده
In this work, we develop and evaluate several least squares support vector machine (LS-SVM) classifiers within the Bayesian evidence framework, in order to preoperatively predict malignancy of ovarian tumors. The analysis includes exploratory data analysis, optimal input variable selection, parameter estimation, and performance evaluation via receiver operating characteristic (ROC) curve analysis. LS-SVM models with linear and radial basis function (RBF) kernels, and logistic regression models have been built on 265 training data, and tested on 160 newly collected patient data. The LS-SVM model with nonlinear RBF kernel achieves the best performance, on the test set with the area under the ROC curve (AUC), sensitivity and specificity equal to 0.92, 81.5% and 84.0%, respectively. The best averaged performance over 30 runs of randomized cross-validation is also obtained by an LS-SVM RBF model, with AUC, sensitivity and specificity equal to 0.94, 90.0% and 80.6%, respectively. These results show that the LS-SVM models have the potential to obtain a reliable preoperative distinction between benign and malignant ovarian tumors, and to assist the clinicians for making a correct diagnosis.
منابع مشابه
Bayesian Least Squares Support Vector Machines for Classification of Ovarian Tumors
The aim of this study is to develop the Bayesian Least Squares Support Vector Machine (LS-SVM) classifiers, for preoperatively predicting the malignancy of ovarian tumors. We describe how to perform parameter estimation, input variable selection for LS-SVM within the evidence framework. The issue of computing the posterior class probability for risk minimization decision making is addressed. Th...
متن کاملMulti-class classification of ovarian tumors
In this work, we developed classifiers to distinguish between four ovarian tumor types using Bayesian least squares support vector machines (LS-SVMs) and kernel logistic regression. Input selection using rank-one updates for LS-SVMs performed better than automatic relevance determination. Evaluation on an independent test set showed good performance of the classifiers to distinguish between all...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملLeast-squares support vector machine and its application in the simultaneous quantitative spectrophotometric determination of pharmaceutical ternary mixture
This paper proposes the least-squares support vector machine (LS-SVM) as an intelligent method applied on absorption spectra for the simultaneous determination of paracetamol (PCT), caffeine (CAF) and ibuprofen (IB) in Novafen. The signal to noise ratio (S/N) increased. Also, In the LS - SVM model, Kernel parameter (σ2) and capacity factor (C) were optimized. Excellent prediction was shown usin...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial intelligence in medicine
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2003